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ABSTRACT
This paper introduces a multiplicative iterative (MI) algo-

rithm for image reconstructions in tomography. This algo-

rithm can accommodate objective functions deduced from

different probability models for measurements. Poisson and

Gaussian (for both emission and transmission scans), or

shifted Poisson (for precorrected PET and X-ray CT), are

examples of such measurement probability models. This

MI algorithm is very easy to implement and respects the

positivity constraint. Furthermore, an exact or approximate

line search step can be easily incorporated into this algorithm

so that the objective functions are guaranteed to increase

during the iterations.

Key Words: Multiplicative iterative (MI) algorithm, emis-

sion and transmission tomography, line search, EM, ISRA.

I. INTRODUCTION
Multiplicative iterative (MI) algorithms, such as the mul-

tiplicative algebraic reconstruction technique (MART) and

maximum likelihood EM (ML-EM), are widely used in

tomography. They aim to optimize different objective func-

tions, e.g. Shannon’s entropy for MART and Poisson based

log-likelihood for ML-EM. One distinctive advantage of MI

algorithms is that they automatically impose the positivity

constraint (i.e. reconstructed image values are not less than

zero). In this paper, we propose an MI algorithm for optimiz-

ing penalized types of objective functions, such as penalized

log-likelihood (PL) or penalized least squares (PLS). This

MI scheme can be expressed as a gradient-based algorithm

with an ascending direction.
Nowadays, statistical image reconstruction in emission or

transmission tomography can be developed based on the

specified probability model for measurements y1, . . . , yn.

For example, for SPECT scans, possible options are Gaus-

sian [1] and Poisson [2] models. Poisson is also proposed

for transmission scans [3]. For randoms pre-corrected PET

scans, possible measurement models are Gaussian, ordinary

Poisson and shifted Poisson [4]. Note that shifted Poisson is

also used for modeling X-ray CT measurements [5].
Different algorithms have been developed to maximize

their corresponding objective functions. For example, ML-

EM [2] is designed for maximizing the likelihood of Poisson

measurements, or the iterative space reconstruction algo-

rithm (ISRA) [1] for maximizing the likelihood of (constant

variance) Gaussian measurements. Attractive aspects of both

ML-EM and ISRA are that they are very easy to implement

and that they respect the positivity constraint. However, if

the objective function contains a penalty term then both ML-

EM and ISRA become impractical as they involve, in each

iteration, non-linear systems that do not possess closed form

solutions.
Two types of algorithms exist in tomography that can

trivially impose the positivity constraint: iterative coordinate

ascent (ICA) [6] and optimization transfer (OT) [7] algo-

rithms. ML-EM and DePierro’s modification to EM (MEM)

[8] are examples of OT for, respectively, ML and MPL

Poisson emission tomography.
Our MI algorithm is competitive with ICA and OT in

tomography. We will demonstrate that the MI algorithm

automatically enforces the positivity constraint. However, MI

by itself may not guarantee monotonicity of the objective

function. An attractive feature of MI is that it easily incor-

porates a line search step so that the positivity constraint

is enforced and, at the mean time, the objective function is

assured to increase. MI with line search does not incur extra

computing cost; its computational burden is tantamount to

ML-EM.
Section II first describes the general MI algorithm and

then implements it to emission and transmission under

various measurement probability models. Simulation results

are reported in Section III with concluding remarks given in

Section IV.

II. A MULTIPLICATIVE ITERATIVE ALGORITHM
FOR OBJECTIVE OPTIMIZATION

II-A. Objective optimization
In what follows, xj ≥ 0 denotes the emission activity

or attenuation coefficient of pixel j, j = 1, . . . , p, and x
denotes the p-vector of all xj . Let the camera measurements

be denoted by yi (i = 1, . . . , n) and y be the n-vector for

all measurements.
Statistical reconstructions in emission and transmission

are usually obtained by:

x̂ = argmaxx≥0Ψ(x). (1)
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The objective function Ψ(x) generally displays the following

structure:

Ψ(x) =
n∑

i=1

li(μi|yi) − hJ(x), (2)

where μi is a function of x given by

μi(x) = ηi(x)+ri =
{

Aix + ri emission;

bie
−Aix + ri transmission,

(3)

where Ai is the ith row of the system matrix A, bi the

known blank scan counts of the ith detector and ri the known

mean background counts. We assume functions li(μi) (i =
1, . . . , n) and J(x) are twice differentiable.

The first term of (2) measures data mismatch, which

can be depicted by the log-likelihood of y. Thus li(μi|yi)
represents the log probability density function (pdf) of

yi. For example, if yi follows Poisson(μi), then li =
−μi + yi log μi [2]; or if yi follows normal N(μi, μi),
then li = − 1

2 (yi − μi)2/μi (weighted least squares) [9].

Another example is the randoms precorrected PET scan

using the shifted Poisson model for measurements, where

li = −(ηi + 2ri) + (yi + 2ri) log(ηi + 2ri) [4].

The second term of (2), called the penalty function, quan-

tifies the local smoothness of x. Parameter h (> 0), referred

to as the smoothing or regularization parameter, balances two

conflicting targets: fidelity of Ax̂ to y and smoothness of x̂.

Function J(x) can take the form of J(x) =
∑p

j=1 νj(Cjx),
where Cjx meditates a neighborhood operation (such as the

first or second order difference) on pixel j, and νj is a

function for penalty, such as quadratic, Huber or hyperbolic

functions. Other νj(x) are also possible.

It is possible that Ψ(x) has multiple local maxima. In

this case, MI finds one of the positively constrained local

maximum, depending on the starting value of the algorithm.

II-B. Multiplicative iterative (MI) algorithms
We adopt the following notations in this paper. Let

b(z)+ = max(0, b(z)) and b(z)− = min(0, b(z)), so that

b(z) = b(z)+ + b(z)−.

Besides, b′(z) represents the derivative of b with respect to z
and b′j(z), the derivative of b with respect to the jth element

of z (i.e. zj). b′(z(k)) denotes b′(z)|z=z(k) where z(k) is the

estimate of z at iteration k.

The Krush-Kuhn-Tucker necessary condition for the pos-

itively constrained optimization of Ψ(x) is: Ψ′
j(x) = 0 if

xj > 0 and Ψ′
j(x) ≤ 0 if xj = 0, for j = 1, . . . , p. Thus,

we aim to solve

xj

(
n∑

i=1

l′i(μi)
∂μi

∂xj
− hJ ′

j(x)

)
= 0, (4)

where ∂μi

∂xj
= aij for emission and ∂μi

∂xj
= −ηiaij for

transmission tomography.

After separating the positive and negative terms of (4), and

moving the negative terms to the other side of the equation,

the resulting expression naturally suggests the following MI

algorithms:

x
(k+1/2)
j = x

(k)
j

∑n
i=1 l′i(μ

(k)
i )

+
aij − hJ ′

j(x
(k))

−

−∑n
i=1 l′i(μ

(k)
i )

−
aij + hJ ′

j(x(k))+
(5)

for emission tomography and

x
(k+1/2)
j = x

(k)
j

−∑n
i=1 l′i(μ

(k)
i )

−
η
(k)
i aij − hJ ′

j(x
(k))

−

∑n
i=1 l′i(μ

(k)
i )

+
η
(k)
i aij + hJ ′

j(x(k))+

(6)

for transmission tomography. Here x(k+1/2) denotes a tem-

porary update of x from x(k). x(k+1/2) will be further

enhanced by a line search step (discussed later) to give

x(k+1).

As both the numerator and denominator of (5) or (6) are

non-negative, x(k+1/2) ≥ 0 when x(k) > 0.

When x
(k)
j > 0, x

(k+1/2)
j = 0 only if J ′

j(x
(k)) ≥ 0

together with{ ∑
i l′i(μ

(k)
i )

+
aij = 0 emission;∑

i l′i(μ
(k)
i )

−
η
(k)
i aij = 0 transmission.

Once x
(k)
j = 0 it remains at zero for subsequent iterations.

Thus we may remove xj once it hits zero and continue the

iterations with the remaining x’s. For this reason we can

assume x
(k)
j > 0 for the MI algorithm.

Equations (5) or (6) serve as fundamental tools for devel-

oping positive constrained algorithms under different options

of li(μi). For example, if measurements yi ∼ Poisson(μi)
then x is updated by

x
(k+1/2)
j = x

(k)
j

∑n
i=1 aijyi/μ

(k)
i − hJ ′

j(x
(k))−∑n

i=1 aij + hJ ′
j(x(k))+

(7)

for emission tomography, and by

x
(k+1/2)
j = x

(k)
j

∑n
i=1 aijη

(k)
i − hJ ′

j(x
(k))−∑n

i=1 aijyiη
(k)
i /μ

(k)
i + hJ ′

j(x(k))+
(8)

for transmission tomography. When h = 0 and all ri = 0
(i.e. no penalty and background noise), (7) becomes ML-

EM of Shepp and Vardi [2] for emission tomography and

(8) reduces to the algorithm of Lange et al [10] for trans-

mission tomography. Another example is that when yi ∼
N(μi, 1/wi), where wi > 0 is independent of x, then (5)

and (6) become

x
(k+1/2)
j = x

(k)
j

∑n
i=1 wiaijyi − hJ ′

j(x
(k))−∑n

i=1 wiaijμ
(k)
i + hJ ′

j(x(k))+
(9)

and

x
(k+1/2)
j = x

(k)
j

∑n
i=1 wiaijη

(k)
i μ

(k)
i − hJ ′

j(x
(k))−∑n

i=1 wiaijη
(k)
i yi + hJ ′

j(x(k))+
(10)
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respectively. When h = 0 and wi a constant, (9) agrees with

ISRA of Titterington [1].

Above examples show that MI demands only projection,

backprojection and the first derivative of J(x), and thus is

easy to implement in tomography.

Iterations in (5) or (6) may fail to assure increments of

Ψ(x). To circumvent this problem we introduce a line search

step. First, write (5) or (6) as

x(k+1/2) = x(k) + S(k)Ψ′(x(k)), (11)

where S = diag(s1, . . . , sp), a diagonal matrix with entries

sj = xj/(−∑n
i=1 l′i(μi)−aij + hJ ′

j(x)) for emission and

sj = xj/(
∑n

i=1 l′i(μi)+ηiaij + hJ ′
j(x)) for transmission

problems. Let d(k) = x(k+1/2) − x(k).

Since all s
(k)
j are positive, d(k) = S(k)Ψ′(x(k)) is in an

uphill direction. If it occurs that Ψ(x(k+1/2)) < Ψ(x(k))
(overshooting step size) then a line search is necessitated,

i.e. find 0 < α(k) < 1 such that

x(k+1) = x(k) + α(k)d(k)

= (1 − α(k))x(k) + α(k)x(k+1/2), (12)

with the property Ψ(x(k+1)) ≥ Ψ(x(k)), where the equality

holds only when x(k+1) = x(k).

From (12), it has x(k+1) ≥ 0 whenever 0 < α(k) < 1,

i.e. the results of line search automatically meet the posi-

tivity constraint. This is a remarkable advantage over other

line search methods in tomography, such as the bent line

approach [11].

Ideally, α(k) is determined by:

α(k) = arg max
α

Ψ(x(k) + αd(k)).

Two possible line searches are: exact or approximate line

search. For exact line search we first let F = −E[Ψ′′(x)],
the expected information matrix of y. It can show that,

when Ψ(x) is given by (2) with E[li(μi|Yi)] = 0 (which

is always true when li is logarithm of pdf), F is given by:

F = AT WA + hJ ′′(x), where W = DV D. Here D and

V are diagonal matrices: D = I for emission tomography

and D = diag{η1, . . . , ηn} for transmission tomography,

while V = diag{−E(∂2l1
∂μ2

1
), . . . ,−E(∂2ln

∂μ2
n

)}. When Ψ(x) is

approximated by

Ψ(x) ≈Ψ(x(k)) + (x − x(k))T Ψ′(x(k))

+
1
2
(x − x(k))T F (k)(x − x(k)), (13)

the “optimal” α(k) is:

α(k) =
(d(k))T (S(k))−1d(k)

(d(k))T AT W (k)Ad(k) + h(d(k))T J ′′(x(k))d(k)
.

(14)

Both the numerator and denominator of (14) are simple to

compute given J ′′(x) is not too complicated. The operation

Ad(k) adds no extra cost as it can be used to update Ax:

Ax(k+1) = Ax(k) + α(k)Ad(k).

For inexact line search we propose the following back-

tracking scheme: for a selected ξ check the following

Armijo’s condition

Ψ(x(k) + ξd(k)) ≥ Ψ(x(k)) + εξd(k)Ψ′(x(k)) (15)

where 0 < ε < 1 is a fixed threshold (for example ε = 10−2);

if (15) is satisfied then stop, otherwise re-set ξ = ρξ (where

ρ < 1, such as ρ = 0.8) and re-evaluate (15). This procedure

is continued until a suitable ξ is obtained and then α(k) = ξ.

Note this inexact line search requires repeated computations

of Ψ(x(k) + ξd(k)) at different ξ values.

We denote the MI algorithm with exact or inexact line

search by MI-EL and MI-IEL respectively. The line search

is only required when Ψ(x(k+1/2)) ≤ Ψ(x(k)). For both MI-

EL and MI-IEL we can show that

1) If Ψ(x) is strictly concave then, under certain regular-

ity conditions, MI-EL or MI-IEL produces a conver-

gent sequence {x(k)} from any initial x(0) > 0.

2) Assume MI-EL or MI-IEL produced iterations con-

verging to x∗: x(k) → x∗ when k → ∞, then the

limit x∗ satisfies the Krush-Kuhn-Tucker condition.

III. RESULTS

This section reports a simulation study comparing MI-

EL with three competitors: (i) the modified EM (MEM)

algorithm of De Pierro [8]; (ii) the SPS algorithm of Fessler

and Erdoğan [12] and (iii) the ICA algorithm of Bouman

and Sauer [6] where pixel level optimization was performed

by Fisher scoring (denoted ICA/FS). We only consider a

simulated SPECT system and reconstructions in emission

tomography in this paper.

This simulation used a phantom of size 64 × 64 pixels

(so that p = 642). There were 64 attenuated projections

uniformly spaced over 3600, each projection contained 64

measurements (thus n = 642). Attenuation coefficients were

0.15 /cm (water) within the body and 0.0375 /cm within

the two lungs. We did not consider collimator blurring nor

scattering in this simulation. The system matrix A (with

dimension 642 × 642) was pre-determined by the geometry

of pixels, adjusted according to the attenuation coefficients.

Poisson noise was added to expected projections μ = Ax
to form the observed measurements vector y. The total

projection count was 400,605.

We used a quadratic penalty in the MPL reconstructions:

J(x) = 1
2

∑p
j=1(xj − ave{xk})2, where k ∈ Nj with Nj

the neighborhood of pixel j. Two smoothing values were

tested: h = 10−3 (over smoothing) and h = 10−5 (moderate

smoothing), and the algorithms were compared correspond-

ing to these smoothing values. All tested algorithms had

an equal (uniform) initial start in order to induce a fair

comparison.

Fig. 1 provides the plot of log-likelihood (penalized)

against iteration numbers for h = 10−3 (in (a)) and
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Fig. 1. log-likelihood versus iterations plot: (a) h = 10−3 and (b)

h = 10−5.

h = 10−5 (in (b)). The MI-EL performed well in both

cases: it offered faster initial speed of convergence than the

competitors. ICA/FS oscillated in the first four iterations for

h = 10−5, however it converged faster once it was stabilized.
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Fig. 2. Reconstructed images by MI-EL (row 1), MEM (row 2),

SPS (row 3) and ICA/FS (row 4). Columns correspond to iterations

8, 16, 32 and 64.

Fig. 2 gives reconstructions by the tested algorithms: MI-

EL (row 1), MEM (row 2), SPS (row 3) and ICA/FS (row

4). Columns of Fig. 2 correspond to iterations 8, 16, 32 and

64. Clearly, ICA/FS restored high frequency components in

the early iterations whereas the other three algorithms only

recovered low frequency components. This phenomena is

well understood and documented in, for example, [6].

IV. CONCLUSIONS
We conclude that MI is an efficient algorithm for con-

strained MPL in tomography. Unlike OT or ICA, MI is very

simple to derive and implement. It can be conceived as a

unifying algorithm for tomography.
The MI algorithm not only enforces the positivity con-

straint automatically, but also easily enables an exact line

search. Our limited simulations demonstrate that MI com-

petes favorably (at least in Poisson emission model) with its

competitors, such as MEM, SPS and ICA.
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[12] J. A. Fessler and Erdoğan, “A paraboloidal surrogates

algorithm for convergent penalized-likelihood emission

image reconstruction,” Proc. IEEE Nuc. Sci. Symp.
Med. Im. Conf., pp. 1132–1135, 1998.

1042


